KokkosBatched::Pttrs

Defined in header: KokkosBatched_Pttrs.hpp

template <typename ArgUplo, typename ArgAlgo>
struct SerialPttrs {
  template <typename DViewType, typename EViewType, typename BViewType>
  KOKKOS_INLINE_FUNCTION
  static int
  invoke(const DViewType& d,
         const EViewType& e,
         const BViewType& b);
};

The Pttrs function solves a system of linear equations with a symmetric positive definite tridiagonal matrix using the L*D*L^T factorization computed by Pttrf. This operation is equivalent to the LAPACK routine DPTTRS for real matrices or ZPTTRS for complex matrices.

Given the L*D*L^T factorization of a symmetric positive definite tridiagonal matrix A:

\[A = L \cdot D \cdot L^T\]

the function solves the system of equations \(A \cdot X = B\) for X.

Parameters

d:

Input view containing the diagonal elements of D from the factorization

e:

Input view containing the subdiagonal elements of L from the factorization

b:

Input/output view containing the right-hand side(s) on input and the solution(s) on output

Type Requirements

  • ArgUplo must be one of the following:
    • KokkosBatched::Uplo::Upper if vector e specifies the superdiagonal of a unit bidiagonal matrix U

    • KokkosBatched::Uplo::Lower if vector e specifies the subdiagonal of a unit bidiagonal matrix L

    • This parameter is primarily used for complex matrices

  • ArgAlgo must be KokkosBatched::Algo::Pttrs::Unblocked for the unblocked algorithm

  • DViewType must be a rank-1 view containing the diagonal elements (length n)

  • EViewType must be a rank-1 view containing the subdiagonal elements (length n-1)

  • BViewType must be a rank-1 view for a single right-hand side, or a rank-2 view for multiple right-hand sides

  • All views must be accessible in the execution space

Examples

#include <Kokkos_Core.hpp>
#include <KokkosBatched_Pttrf.hpp>
#include <KokkosBatched_Pttrs.hpp>

using execution_space = Kokkos::DefaultExecutionSpace;
using memory_space = execution_space::memory_space;

// Scalar type to use
using scalar_type = double;

int main(int argc, char* argv[]) {
  Kokkos::initialize(argc, argv);
  {
    // Matrix dimension and number of right-hand sides
    int n = 10;
    int nrhs = 2;

    // Create diagonal, off-diagonal, and right-hand side vectors
    Kokkos::View<scalar_type*, memory_space> d("d", n);      // Diagonal elements
    Kokkos::View<scalar_type*, memory_space> e("e", n-1);    // Subdiagonal elements
    Kokkos::View<scalar_type**, memory_space> B("B", n, nrhs); // Right-hand sides

    // Initialize vectors on host
    auto d_host = Kokkos::create_mirror_view(d);
    auto e_host = Kokkos::create_mirror_view(e);
    auto B_host = Kokkos::create_mirror_view(B);

    // Fill with a symmetric positive definite tridiagonal matrix
    // Using a simple model problem (1D Poisson equation discretization)
    for (int i = 0; i < n; ++i) {
      d_host(i) = 2.0;  // Diagonal
    }
    for (int i = 0; i < n-1; ++i) {
      e_host(i) = -1.0; // Subdiagonal
    }

    // Initialize right-hand sides
    for (int j = 0; j < nrhs; ++j) {
      for (int i = 0; i < n; ++i) {
        B_host(i, j) = 1.0 + i + j*n;
      }
    }

    // Copy to device
    Kokkos::deep_copy(d, d_host);
    Kokkos::deep_copy(e, e_host);
    Kokkos::deep_copy(B, B_host);

    // Save original values for verification
    Kokkos::View<scalar_type*, memory_space> d_orig("d_orig", n);
    Kokkos::View<scalar_type*, memory_space> e_orig("e_orig", n-1);
    Kokkos::View<scalar_type**, memory_space> B_orig("B_orig", n, nrhs);

    Kokkos::deep_copy(d_orig, d);
    Kokkos::deep_copy(e_orig, e);
    Kokkos::deep_copy(B_orig, B);

    // Compute the factorization
    Kokkos::parallel_for(1, KOKKOS_LAMBDA(const int i) {
      KokkosBatched::SerialPttrf<KokkosBatched::Algo::Pttrf::Unblocked>::invoke(d, e);
    });

    // Solve the system using the factorization
    Kokkos::parallel_for(1, KOKKOS_LAMBDA(const int i) {
      KokkosBatched::SerialPttrs<KokkosBatched::Uplo::Lower,
                                KokkosBatched::Algo::Pttrs::Unblocked>::invoke(d, e, B);
    });

    // Copy results back to host
    Kokkos::deep_copy(B_host, B);

    // Verify solution by checking A*X ≈ B_orig
    auto d_orig_host = Kokkos::create_mirror_view_and_copy(Kokkos::HostSpace(), d_orig);
    auto e_orig_host = Kokkos::create_mirror_view_and_copy(Kokkos::HostSpace(), e_orig);
    auto B_orig_host = Kokkos::create_mirror_view_and_copy(Kokkos::HostSpace(), B_orig);

    // Create full matrix A for verification
    Kokkos::View<scalar_type**, Kokkos::LayoutRight, Kokkos::HostSpace> A("A", n, n);

    // Construct original A in full storage
    for (int i = 0; i < n; ++i) {
      for (int j = 0; j < n; ++j) {
        A(i, j) = 0.0;
      }
      A(i, i) = d_orig_host(i);
    }

    for (int i = 0; i < n-1; ++i) {
      A(i+1, i) = e_orig_host(i);
      A(i, i+1) = e_orig_host(i); // Symmetric
    }

    // Check A*X ≈ B_orig
    bool test_passed = true;
    for (int j = 0; j < nrhs; ++j) {
      for (int i = 0; i < n; ++i) {
        scalar_type sum = 0.0;

        // Compute row i of A * column j of X
        for (int k = 0; k < n; ++k) {
          sum += A(i, k) * B_host(k, j);
        }

        // Check against original right-hand side
        if (std::abs(sum - B_orig_host(i, j)) > 1e-10) {
          test_passed = false;
          std::cout << "Mismatch at (" << i << ", " << j << "): "
                    << sum << " vs " << B_orig_host(i, j) << std::endl;
        }
      }
    }

    if (test_passed) {
      std::cout << "Pttrs test: PASSED" << std::endl;
    } else {
      std::cout << "Pttrs test: FAILED" << std::endl;
    }
  }
  Kokkos::finalize();
  return 0;
}

Batched Example

#include <Kokkos_Core.hpp>
#include <KokkosBatched_Pttrf.hpp>
#include <KokkosBatched_Pttrs.hpp>

using execution_space = Kokkos::DefaultExecutionSpace;
using memory_space = execution_space::memory_space;

// Scalar type to use
using scalar_type = double;

int main(int argc, char* argv[]) {
  Kokkos::initialize(argc, argv);
  {
    // Batch and matrix dimensions
    int batch_size = 50; // Number of matrices
    int n = 10;          // Matrix dimension
    int nrhs = 2;        // Number of right-hand sides

    // Create batched views
    Kokkos::View<scalar_type**, memory_space> d("d", batch_size, n);       // Diagonal elements
    Kokkos::View<scalar_type**, memory_space> e("e", batch_size, n-1);     // Subdiagonal elements
    Kokkos::View<scalar_type***, memory_space> B("B", batch_size, n, nrhs); // Right-hand sides

    // Initialize on host
    auto d_host = Kokkos::create_mirror_view(d);
    auto e_host = Kokkos::create_mirror_view(e);
    auto B_host = Kokkos::create_mirror_view(B);

    for (int b = 0; b < batch_size; ++b) {
      // Fill with a symmetric positive definite tridiagonal matrix
      // Slightly different for each batch
      for (int i = 0; i < n; ++i) {
        d_host(b, i) = 2.0 + 0.1 * b;  // Diagonal
      }
      for (int i = 0; i < n-1; ++i) {
        e_host(b, i) = -1.0 - 0.01 * b; // Subdiagonal
      }

      // Initialize right-hand sides
      for (int j = 0; j < nrhs; ++j) {
        for (int i = 0; i < n; ++i) {
          B_host(b, i, j) = 1.0 + i + j*n + b*0.1;
        }
      }
    }

    // Copy to device
    Kokkos::deep_copy(d, d_host);
    Kokkos::deep_copy(e, e_host);
    Kokkos::deep_copy(B, B_host);

    // Save original for verification
    Kokkos::View<scalar_type**, memory_space> d_orig("d_orig", batch_size, n);
    Kokkos::View<scalar_type**, memory_space> e_orig("e_orig", batch_size, n-1);
    Kokkos::View<scalar_type***, memory_space> B_orig("B_orig", batch_size, n, nrhs);

    Kokkos::deep_copy(d_orig, d);
    Kokkos::deep_copy(e_orig, e);
    Kokkos::deep_copy(B_orig, B);

    // Perform batched factorization
    Kokkos::parallel_for(batch_size, KOKKOS_LAMBDA(const int b) {
      auto d_b = Kokkos::subview(d, b, Kokkos::ALL());
      auto e_b = Kokkos::subview(e, b, Kokkos::ALL());

      KokkosBatched::SerialPttrf<KokkosBatched::Algo::Pttrf::Unblocked>::invoke(d_b, e_b);
    });

    // Solve batched linear systems
    Kokkos::parallel_for(batch_size, KOKKOS_LAMBDA(const int b) {
      auto d_b = Kokkos::subview(d, b, Kokkos::ALL());
      auto e_b = Kokkos::subview(e, b, Kokkos::ALL());
      auto B_b = Kokkos::subview(B, b, Kokkos::ALL(), Kokkos::ALL());

      KokkosBatched::SerialPttrs<KokkosBatched::Uplo::Lower,
                                KokkosBatched::Algo::Pttrs::Unblocked>::invoke(d_b, e_b, B_b);
    });

    // Solutions are now in B
    // Each B(b, :, :) contains the solution for the corresponding system
  }
  Kokkos::finalize();
  return 0;
}