KokkosBatched::Pbtrf¶
Defined in header: KokkosBatched_Pbtrf.hpp
template <typename ArgUplo, typename ArgAlgo>
struct SerialPbtrf {
template <typename ABViewType>
KOKKOS_INLINE_FUNCTION
static int
invoke(const ABViewType& ab);
};
The Pbtrf
function computes the Cholesky factorization of a real symmetric positive definite band matrix or a complex Hermitian positive definite band matrix. This operation is equivalent to the LAPACK routine DPBTRF
for real matrices or ZPBTRF
for complex matrices.
The factorization has the form:
or
where \(U\) is an upper triangular band matrix and \(L\) is a lower triangular band matrix. For complex matrices, \(U^T\) and \(L^T\) represent the conjugate transpose.
Parameters¶
- ab:
Input/output view containing the band matrix in compact band storage format. On exit, contains the Cholesky factorization.
Type Requirements¶
ArgUplo
must be one of the following:KokkosBatched::Uplo::Upper
for upper triangular factorizationKokkosBatched::Uplo::Lower
for lower triangular factorization
ArgAlgo
must beKokkosBatched::Algo::Pbtrf::Unblocked
for the unblocked algorithmABViewType
must be a rank-2 view containing the band matrix in the appropriate formatThe view must be accessible in the execution space
Band Storage Format¶
In the band storage format:
If
Uplo::Upper
: Element A(i,j) is stored in ab(ku+i-j,j) for max(0,j-ku) <= i <= j, where ku is the number of superdiagonals.If
Uplo::Lower
: Element A(i,j) is stored in ab(i-j,j) for j <= i <= min(n-1,j+kl), where kl is the number of subdiagonals.
Examples¶
#include <Kokkos_Core.hpp>
#include <KokkosBatched_Pbtrf.hpp>
using execution_space = Kokkos::DefaultExecutionSpace;
using memory_space = execution_space::memory_space;
// Scalar type to use
using scalar_type = double;
int main(int argc, char* argv[]) {
Kokkos::initialize(argc, argv);
{
// Matrix dimensions and band parameters
int n = 10; // Matrix dimension
int kd = 2; // Number of (super/sub)diagonals
int ldab = kd + 1; // Leading dimension of band matrix
// Create banded matrix (upper triangular band format)
Kokkos::View<scalar_type**, Kokkos::LayoutRight, memory_space> ab("ab", ldab, n);
// Initialize band matrix on host with a positive definite matrix
auto ab_host = Kokkos::create_mirror_view(ab);
// Clear matrix first
for (int j = 0; j < n; ++j) {
for (int i = 0; i < ldab; ++i) {
ab_host(i, j) = 0.0;
}
}
// Fill band matrix with SPD pattern (diagonally dominant)
for (int j = 0; j < n; ++j) {
// Diagonal entries (stored at row kd)
ab_host(kd, j) = 4.0;
// Superdiagonal entries (if within band)
if (j < n-1) ab_host(kd-1, j+1) = -1.0;
if (j < n-2) ab_host(kd-2, j+2) = -0.5;
// Create symmetric entries (not stored directly in upper format)
}
// Copy to device
Kokkos::deep_copy(ab, ab_host);
// Save a copy of the original matrix for verification
Kokkos::View<scalar_type**, Kokkos::LayoutRight, memory_space> ab_orig("ab_orig", ldab, n);
Kokkos::deep_copy(ab_orig, ab);
// Perform Cholesky factorization
Kokkos::parallel_for(1, KOKKOS_LAMBDA(const int i) {
KokkosBatched::SerialPbtrf<KokkosBatched::Uplo::Upper,
KokkosBatched::Algo::Pbtrf::Unblocked>::invoke(ab);
});
// Copy results back to host
Kokkos::deep_copy(ab_host, ab);
// At this point, ab_host contains the Cholesky factor U in band format
// We can verify by reconstructing A = U^T * U and comparing with original
// Create full matrices for verification
// (In a real application, you would work directly with the banded format)
Kokkos::View<scalar_type**, Kokkos::LayoutRight, Kokkos::HostSpace>
A_full("A_full", n, n),
U_full("U_full", n, n),
UtU("UtU", n, n);
// Extract original matrix A to full storage
auto ab_orig_host = Kokkos::create_mirror_view_and_copy(Kokkos::HostSpace(), ab_orig);
for (int j = 0; j < n; ++j) {
for (int i = std::max(0, j-kd); i <= j; ++i) {
int ab_row = kd + i - j;
A_full(i, j) = ab_orig_host(ab_row, j);
A_full(j, i) = ab_orig_host(ab_row, j); // Symmetric
}
}
// Extract U to full storage
for (int j = 0; j < n; ++j) {
for (int i = std::max(0, j-kd); i <= j; ++i) {
int ab_row = kd + i - j;
U_full(i, j) = ab_host(ab_row, j);
}
}
// Compute U^T * U
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
UtU(i, j) = 0.0;
for (int k = 0; k < n; ++k) {
UtU(i, j) += U_full(k, i) * U_full(k, j);
}
}
}
// Verify U^T * U ≈ A
bool test_passed = true;
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if (std::abs(UtU(i, j) - A_full(i, j)) > 1e-10) {
test_passed = false;
std::cout << "Mismatch at (" << i << ", " << j << "): "
<< UtU(i, j) << " vs " << A_full(i, j) << std::endl;
}
}
}
if (test_passed) {
std::cout << "Pbtrf test: PASSED" << std::endl;
} else {
std::cout << "Pbtrf test: FAILED" << std::endl;
}
}
Kokkos::finalize();
return 0;
}
Batched Example¶
#include <Kokkos_Core.hpp>
#include <KokkosBatched_Pbtrf.hpp>
using execution_space = Kokkos::DefaultExecutionSpace;
using memory_space = execution_space::memory_space;
// Scalar type to use
using scalar_type = double;
int main(int argc, char* argv[]) {
Kokkos::initialize(argc, argv);
{
// Batch and matrix dimensions
int batch_size = 50; // Number of matrices
int n = 10; // Matrix dimension
int kd = 2; // Number of (super/sub)diagonals
int ldab = kd + 1; // Leading dimension of band matrix
// Create batched views for band matrices
Kokkos::View<scalar_type***, Kokkos::LayoutRight, memory_space>
ab("ab", batch_size, ldab, n);
// Initialize on host
auto ab_host = Kokkos::create_mirror_view(ab);
for (int b = 0; b < batch_size; ++b) {
// Clear matrix first
for (int j = 0; j < n; ++j) {
for (int i = 0; i < ldab; ++i) {
ab_host(b, i, j) = 0.0;
}
}
// Fill band matrix with SPD pattern (diagonally dominant)
// Each batch gets slightly different values
for (int j = 0; j < n; ++j) {
// Diagonal entries (stored at row kd)
ab_host(b, kd, j) = 4.0 + 0.1 * b;
// Superdiagonal entries (if within band)
if (j < n-1) ab_host(b, kd-1, j+1) = -1.0 - 0.01 * b;
if (j < n-2) ab_host(b, kd-2, j+2) = -0.5 - 0.005 * b;
}
}
// Copy to device
Kokkos::deep_copy(ab, ab_host);
// Perform batch of Cholesky factorizations
Kokkos::parallel_for(batch_size, KOKKOS_LAMBDA(const int b) {
auto ab_b = Kokkos::subview(ab, b, Kokkos::ALL(), Kokkos::ALL());
KokkosBatched::SerialPbtrf<KokkosBatched::Uplo::Upper,
KokkosBatched::Algo::Pbtrf::Unblocked>::invoke(ab_b);
});
// Results are now in ab
// Each ab(b, :, :) contains a Cholesky factorization
}
Kokkos::finalize();
return 0;
}