KokkosBatched::Gbtrs

Defined in header: KokkosBatched_Gbtrs.hpp

template <typename ArgTrans, typename ArgAlgo>
struct SerialGbtrs {
  template <typename AViewType, typename PivViewType, typename BViewType>
  KOKKOS_INLINE_FUNCTION
  static int
  invoke(const AViewType& A,
         const PivViewType& piv,
         const BViewType& b,
         const int kl,
         const int ku);
};

The Gbtrs function solves a system of linear equations with a general band matrix A using the LU factorization computed by Gbtrf. The function can solve the following systems:

  1. \(A \cdot X = B\) (Trans::NoTranspose)

  2. \(A^T \cdot X = B\) (Trans::Transpose)

  3. \(A^H \cdot X = B\) (Trans::ConjTranspose)

where A is an N-by-N band matrix with KL subdiagonals and KU superdiagonals, and B is a matrix with multiple right-hand sides.

Parameters

A:

Input banded matrix view containing the LU factorization from Gbtrf

piv:

Input view containing the pivot indices from Gbtrf

b:

Input/output view containing right-hand sides on input and solutions on output

kl:

Number of subdiagonals within the band of A (kl ≥ 0)

ku:

Number of superdiagonals within the band of A (ku ≥ 0)

Type Requirements

  • ArgTrans must be one of the following:
    • KokkosBatched::Trans::NoTranspose to solve \(A \cdot X = B\)

    • KokkosBatched::Trans::Transpose to solve \(A^T \cdot X = B\)

    • KokkosBatched::Trans::ConjTranspose to solve \(A^H \cdot X = B\)

  • ArgAlgo must be KokkosBatched::Algo::Gbtrs::Unblocked for the unblocked algorithm

  • AViewType must be a rank-2 view containing the banded matrix in the appropriate format with LU factorization

  • PivViewType must be a rank-1 view containing the pivot indices

  • BViewType must be a rank-1 view for a single right-hand side, or a rank-2 view for multiple right-hand sides

  • All views must be accessible in the execution space

Examples

#include <Kokkos_Core.hpp>
#include <KokkosBatched_Gbtrf.hpp>
#include <KokkosBatched_Gbtrs.hpp>

using execution_space = Kokkos::DefaultExecutionSpace;
using memory_space = execution_space::memory_space;

// Scalar type to use
using scalar_type = double;

int main(int argc, char* argv[]) {
  Kokkos::initialize(argc, argv);
  {
    // Matrix dimensions and band parameters
    int n = 10;          // Matrix dimension
    int nrhs = 2;        // Number of right-hand sides
    int kl = 2;          // Number of subdiagonals
    int ku = 1;          // Number of superdiagonals
    int ldab = 2*kl+ku+1; // Leading dimension of band matrix

    // Create banded matrix, pivot vector, and right-hand sides
    Kokkos::View<scalar_type**, Kokkos::LayoutRight, memory_space> Ab("Ab", ldab, n);
    Kokkos::View<int*, memory_space> piv("piv", n);
    Kokkos::View<scalar_type**, Kokkos::LayoutRight, memory_space> B("B", n, nrhs);

    // Initialize banded matrix on host
    auto Ab_host = Kokkos::create_mirror_view(Ab);

    // Create a diagonally dominant matrix for stability
    for (int j = 0; j < n; ++j) {
      for (int i = std::max(0, j-ku); i <= std::min(n-1, j+kl); ++i) {
        int band_row = ku + i - j;

        if (i == j) {
          // Diagonal - make it dominant
          Ab_host(band_row, j) = 10.0;
        } else {
          // Off-diagonal
          Ab_host(band_row, j) = -1.0;
        }
      }
    }

    // Initialize right-hand sides on host
    auto B_host = Kokkos::create_mirror_view(B);
    for (int j = 0; j < nrhs; ++j) {
      for (int i = 0; i < n; ++i) {
        B_host(i, j) = 1.0 + i + j*n;
      }
    }

    // Save a copy of the original matrix and right-hand sides for verification
    Kokkos::View<scalar_type**, Kokkos::LayoutRight, memory_space> Ab_orig("Ab_orig", ldab, n);
    Kokkos::View<scalar_type**, Kokkos::LayoutRight, memory_space> B_orig("B_orig", n, nrhs);

    auto Ab_orig_host = Kokkos::create_mirror_view(Ab_orig);
    auto B_orig_host = Kokkos::create_mirror_view(B_orig);

    Kokkos::deep_copy(Ab_orig_host, Ab_host);
    Kokkos::deep_copy(B_orig_host, B_host);

    // Copy initialized data to device
    Kokkos::deep_copy(Ab, Ab_host);
    Kokkos::deep_copy(B, B_host);
    Kokkos::deep_copy(Ab_orig, Ab_orig_host);
    Kokkos::deep_copy(B_orig, B_orig_host);

    // Perform LU factorization
    Kokkos::parallel_for(1, KOKKOS_LAMBDA(const int i) {
      KokkosBatched::SerialGbtrf<KokkosBatched::Algo::Gbtrf::Unblocked>::invoke(Ab, piv, kl, ku);
    });

    // Solve the linear system
    Kokkos::parallel_for(1, KOKKOS_LAMBDA(const int i) {
      KokkosBatched::SerialGbtrs<KokkosBatched::Trans::NoTranspose,
                                KokkosBatched::Algo::Gbtrs::Unblocked>::invoke(Ab, piv, B, kl, ku);
    });

    // Copy results back to host
    Kokkos::deep_copy(B_host, B);

    // Verify the solution by checking A*X ≈ B_orig
    // For a band matrix, this involves manually computing the matrix-vector product
    // using the band structure

    bool test_passed = true;
    for (int j = 0; j < nrhs; ++j) {
      for (int i = 0; i < n; ++i) {
        scalar_type sum = 0.0;

        // Compute row i of A * column j of X
        for (int k = std::max(0, i-kl); k <= std::min(n-1, i+ku); ++k) {
          int band_row = ku + i - k;
          sum += Ab_orig_host(band_row, k) * B_host(k, j);
        }

        // Check against original right-hand side
        if (std::abs(sum - B_orig_host(i, j)) > 1e-10) {
          test_passed = false;
          std::cout << "Mismatch at (" << i << ", " << j << "): "
                    << sum << " vs " << B_orig_host(i, j) << std::endl;
        }
      }
    }

    if (test_passed) {
      std::cout << "Gbtrs test: PASSED" << std::endl;
    } else {
      std::cout << "Gbtrs test: FAILED" << std::endl;
    }
  }
  Kokkos::finalize();
  return 0;
}

Batched Example

#include <Kokkos_Core.hpp>
#include <KokkosBatched_Gbtrf.hpp>
#include <KokkosBatched_Gbtrs.hpp>

using execution_space = Kokkos::DefaultExecutionSpace;
using memory_space = execution_space::memory_space;

// Scalar type to use
using scalar_type = double;

int main(int argc, char* argv[]) {
  Kokkos::initialize(argc, argv);
  {
    // Batch and matrix dimensions
    int batch_size = 100; // Number of matrices
    int n = 10;           // Matrix dimension
    int nrhs = 2;         // Number of right-hand sides
    int kl = 2;           // Number of subdiagonals
    int ku = 1;           // Number of superdiagonals
    int ldab = 2*kl+ku+1; // Leading dimension of band matrix

    // Create batched views
    Kokkos::View<scalar_type***, Kokkos::LayoutRight, memory_space>
      Ab("Ab", batch_size, ldab, n);
    Kokkos::View<int**, memory_space> piv("piv", batch_size, n);
    Kokkos::View<scalar_type***, Kokkos::LayoutRight, memory_space>
      B("B", batch_size, n, nrhs);

    // Initialize on host
    auto Ab_host = Kokkos::create_mirror_view(Ab);
    auto B_host = Kokkos::create_mirror_view(B);

    for (int b = 0; b < batch_size; ++b) {
      // Create a diagonally dominant matrix for stability
      for (int j = 0; j < n; ++j) {
        for (int i = std::max(0, j-ku); i <= std::min(n-1, j+kl); ++i) {
          int band_row = ku + i - j;

          if (i == j) {
            // Diagonal - make it dominant
            Ab_host(b, band_row, j) = 10.0 + 0.1 * b;
          } else {
            // Off-diagonal
            Ab_host(b, band_row, j) = -1.0 - 0.01 * b;
          }
        }
      }

      // Initialize right-hand sides
      for (int j = 0; j < nrhs; ++j) {
        for (int i = 0; i < n; ++i) {
          B_host(b, i, j) = 1.0 + i + j*n + b*0.1;
        }
      }
    }

    // Copy to device
    Kokkos::deep_copy(Ab, Ab_host);
    Kokkos::deep_copy(B, B_host);

    // Save original for verification
    Kokkos::View<scalar_type***, Kokkos::LayoutRight, memory_space>
      Ab_orig("Ab_orig", batch_size, ldab, n);
    Kokkos::View<scalar_type***, Kokkos::LayoutRight, memory_space>
      B_orig("B_orig", batch_size, n, nrhs);

    Kokkos::deep_copy(Ab_orig, Ab);
    Kokkos::deep_copy(B_orig, B);

    // Perform batched LU factorization
    Kokkos::parallel_for(batch_size, KOKKOS_LAMBDA(const int b) {
      auto Ab_b = Kokkos::subview(Ab, b, Kokkos::ALL(), Kokkos::ALL());
      auto piv_b = Kokkos::subview(piv, b, Kokkos::ALL());

      KokkosBatched::SerialGbtrf<KokkosBatched::Algo::Gbtrf::Unblocked>::invoke(Ab_b, piv_b, kl, ku);
    });

    // Solve batched linear systems
    Kokkos::parallel_for(batch_size, KOKKOS_LAMBDA(const int b) {
      auto Ab_b = Kokkos::subview(Ab, b, Kokkos::ALL(), Kokkos::ALL());
      auto piv_b = Kokkos::subview(piv, b, Kokkos::ALL());
      auto B_b = Kokkos::subview(B, b, Kokkos::ALL(), Kokkos::ALL());

      KokkosBatched::SerialGbtrs<KokkosBatched::Trans::NoTranspose,
                                KokkosBatched::Algo::Gbtrs::Unblocked>::invoke(Ab_b, piv_b, B_b, kl, ku);
    });

    // Solutions are now in B
    // Each B(b, :, :) contains the solution for the corresponding system
  }
  Kokkos::finalize();
  return 0;
}