KokkosBatched::InverseLU¶
Defined in header: KokkosBatched_InverseLU_Decl.hpp
template <typename ArgAlgo>
struct SerialInverseLU {
template <typename AViewType, typename wViewType>
KOKKOS_INLINE_FUNCTION
static int
invoke(const AViewType& A,
const wViewType& w);
};
template <typename MemberType, typename ArgAlgo>
struct TeamInverseLU {
template <typename AViewType, typename wViewType>
KOKKOS_INLINE_FUNCTION
static int
invoke(const MemberType& member,
const AViewType& A,
const wViewType& w);
};
The InverseLU
function computes the inverse of a matrix using its LU factorization. It assumes that the input matrix A
already contains the LU factorization (as computed by Getrf
or similar function). The function returns the inverse of the original matrix in the A
view.
The algorithm performs the following steps: 1. Copies the LU factorization from A to workspace w 2. Sets A to the identity matrix 3. Solves the system (LU) * A = I
Mathematically, given a matrix A with its LU factorization A = P*L*U (where P is a permutation matrix, L is lower triangular with unit diagonal, and U is upper triangular), this function computes A⁻¹.
Parameters¶
- member:
Team execution policy instance (only for team version)
- A:
Input/output matrix view containing LU factorization on input and matrix inverse on output
- w:
Workspace view with enough space to hold a copy of A
Type Requirements¶
ArgAlgo
specifies the algorithm to be used for the SolveLU operationMemberType
must be a Kokkos TeamPolicy member type (only for team version)AViewType
must be a rank-2 view containing the LU factorization of the matrixwViewType
must be a rank-1 view with enough space to reinterpret as a matrix of the same dimensions as AAll views must be accessible in the execution space
Examples¶
#include <Kokkos_Core.hpp>
#include <KokkosBatched_Getrf.hpp>
#include <KokkosBatched_InverseLU_Decl.hpp>
using execution_space = Kokkos::DefaultExecutionSpace;
using memory_space = execution_space::memory_space;
// Scalar type to use
using scalar_type = double;
int main(int argc, char* argv[]) {
Kokkos::initialize(argc, argv);
{
// Matrix dimensions
int n = 5; // Matrix dimension
// Create matrix and workspace
Kokkos::View<scalar_type**, Kokkos::LayoutRight, memory_space> A("A", n, n);
Kokkos::View<scalar_type*, memory_space> w("w", n * n);
// Initialize matrix on host
auto A_host = Kokkos::create_mirror_view(A);
// Create a well-conditioned matrix for stability
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if (i == j) {
// Diagonal
A_host(i, j) = 10.0;
} else {
// Off-diagonal
A_host(i, j) = 1.0;
}
}
}
// Save a copy of the original matrix for verification
Kokkos::View<scalar_type**, Kokkos::LayoutRight, memory_space> A_orig("A_orig", n, n);
auto A_orig_host = Kokkos::create_mirror_view(A_orig);
Kokkos::deep_copy(A_orig_host, A_host);
// Copy initialized data to device
Kokkos::deep_copy(A, A_host);
Kokkos::deep_copy(A_orig, A_orig_host);
// Create pivot array for LU factorization
Kokkos::View<int*, memory_space> piv("piv", n);
// Perform LU factorization in-place
Kokkos::parallel_for(1, KOKKOS_LAMBDA(const int i) {
KokkosBatched::SerialGetrf<KokkosBatched::Algo::Getrf::Unblocked>::invoke(A, piv);
});
// Compute matrix inverse using InverseLU
Kokkos::parallel_for(1, KOKKOS_LAMBDA(const int i) {
KokkosBatched::SerialInverseLU<KokkosBatched::Algo::SolveLU::Unblocked>::invoke(A, w);
});
// Copy results back to host
Kokkos::deep_copy(A_host, A);
// Verify the inverse by checking A_orig * A_inv ≈ I
bool test_passed = true;
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
scalar_type sum = 0.0;
// Compute element (i,j) of A_orig * A_inv
for (int k = 0; k < n; ++k) {
sum += A_orig_host(i, k) * A_host(k, j);
}
// Check against identity matrix
scalar_type expected = (i == j) ? 1.0 : 0.0;
if (std::abs(sum - expected) > 1e-10) {
test_passed = false;
std::cout << "Mismatch at (" << i << ", " << j << "): "
<< sum << " vs " << expected << std::endl;
}
}
}
if (test_passed) {
std::cout << "InverseLU test: PASSED" << std::endl;
} else {
std::cout << "InverseLU test: FAILED" << std::endl;
}
}
Kokkos::finalize();
return 0;
}
Team Version Example¶
#include <Kokkos_Core.hpp>
#include <KokkosBatched_Getrf.hpp>
#include <KokkosBatched_InverseLU_Decl.hpp>
using execution_space = Kokkos::DefaultExecutionSpace;
using memory_space = execution_space::memory_space;
// Scalar type to use
using scalar_type = double;
int main(int argc, char* argv[]) {
Kokkos::initialize(argc, argv);
{
// Batch and matrix dimensions
int batch_size = 50; // Number of matrices
int n = 5; // Matrix dimension
// Create batched views
Kokkos::View<scalar_type***, Kokkos::LayoutRight, memory_space>
A("A", batch_size, n, n);
Kokkos::View<scalar_type**, memory_space>
w("w", batch_size, n * n);
Kokkos::View<int**, memory_space>
piv("piv", batch_size, n);
// Initialize on host
auto A_host = Kokkos::create_mirror_view(A);
for (int b = 0; b < batch_size; ++b) {
// Create a well-conditioned matrix for stability
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if (i == j) {
// Diagonal
A_host(b, i, j) = 10.0 + 0.1 * b;
} else {
// Off-diagonal
A_host(b, i, j) = 1.0 + 0.01 * b;
}
}
}
}
// Copy to device
Kokkos::deep_copy(A, A_host);
// Save original for verification
Kokkos::View<scalar_type***, Kokkos::LayoutRight, memory_space>
A_orig("A_orig", batch_size, n, n);
Kokkos::deep_copy(A_orig, A);
// Perform batched LU factorization
Kokkos::parallel_for(batch_size, KOKKOS_LAMBDA(const int b) {
auto A_b = Kokkos::subview(A, b, Kokkos::ALL(), Kokkos::ALL());
auto piv_b = Kokkos::subview(piv, b, Kokkos::ALL());
KokkosBatched::SerialGetrf<KokkosBatched::Algo::Getrf::Unblocked>::invoke(A_b, piv_b);
});
// Create team policy
using policy_type = Kokkos::TeamPolicy<execution_space>;
policy_type policy(batch_size, Kokkos::AUTO);
// Compute batched matrix inverses using TeamInverseLU
Kokkos::parallel_for("InverseLU", policy,
KOKKOS_LAMBDA(const typename policy_type::member_type& member) {
const int b = member.league_rank();
auto A_b = Kokkos::subview(A, b, Kokkos::ALL(), Kokkos::ALL());
auto w_b = Kokkos::subview(w, b, Kokkos::ALL());
KokkosBatched::TeamInverseLU<typename policy_type::member_type,
KokkosBatched::Algo::SolveLU::Unblocked>
::invoke(member, A_b, w_b);
}
);
// Copy results back to host
Kokkos::deep_copy(A_host, A);
// Verify the inverse by checking A_orig * A_inv ≈ I for each batch
auto A_orig_host = Kokkos::create_mirror_view_and_copy(Kokkos::HostSpace(), A_orig);
bool test_passed = true;
for (int b = 0; b < batch_size; ++b) {
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
scalar_type sum = 0.0;
// Compute element (i,j) of A_orig * A_inv
for (int k = 0; k < n; ++k) {
sum += A_orig_host(b, i, k) * A_host(b, k, j);
}
// Check against identity matrix
scalar_type expected = (i == j) ? 1.0 : 0.0;
if (std::abs(sum - expected) > 1e-10) {
test_passed = false;
std::cout << "Batch " << b << " mismatch at (" << i << ", " << j << "): "
<< sum << " vs " << expected << std::endl;
break;
}
}
if (!test_passed) break;
}
if (!test_passed) break;
}
if (test_passed) {
std::cout << "Batched TeamInverseLU test: PASSED" << std::endl;
} else {
std::cout << "Batched TeamInverseLU test: FAILED" << std::endl;
}
}
Kokkos::finalize();
return 0;
}